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A quasi-vector finite difference mode solver for
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A finite difference scheme based on the polynomial interpolation is constructed to solve the quasi-vector
equations for optical waveguides with step-index profiles. The discontinuities of the normal components of
the electric field across abrupt dielectric interfaces are taken into account. The numerical results include
the polarization effects, but the memory requirement is the same as in solving the scalar wave equation.
Moreover, the proposed finite difference scheme can be applied to both uniform and non-uniform mesh
grids. The modal propagation constants and field distributions for a buried rectangular waveguide and
a rib waveguide are presented. Solutions are compared favorably with those obtained by the numerical
approaches published earlier.
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Mode solver for optical waveguides is a key issue in pho-
tonic device design. Only a few simple waveguide ge-
ometries, however, can be solved analytically, e.g., the
one-dimensional slab waveguide or the circular core op-
tical fiber. Therefore, the use of numerical (or approxi-
mate) analysis becomes necessary. To perform this task
with accuracy, various kinds of numerical techniques[1,2],
such as finite difference method (FDM)[3], finite ele-
ment method (FEM)[4], and mapped Galerkin method
(MGM)[5,6], have been proposed. Among them, FDM is
an attractive candidate because of the simplicity of its
implementation and the sparsity of its resulted matrix.

To date, FDM has been employed to solve both scalar[7]
and vector[8] wave equations for optical waveguides with
step-index[7,8] even arbitrary-index[3] profiles. In the for-
mer case, it is valid only for optical waveguides with very
small refractive index difference (say, weakly-guiding
waveguides). In the latter case, the optical waveguides
with large refractive index difference in regions of high
field intensity can be analyzed, but there is a large in-
crease in computational time and memory[1,2]. Instead,
the mode solver based on quasi-vector wave equation is
a good candidate for optical waveguides, in which the
polarization effects of the guided modes are considered,
while the memory requirement is the same as that in
solving the scalar wave equation. As a result, the com-
putational time is moderate. In addition, Taylor series
expansion (TSE) is often used to approximate the re-
sulted quasi-vector wave equation[1,2]. However, the TSE
is not easily adaptable to non-uniform grid sizes and ex-
tended to account for the discontinuities of the normal
components of the electric field across abrupt dielectric
interfaces.

In this letter, a modified finite difference scheme is con-
structed for quasi-vector analysis of optical waveguides
with step-index profiles. The polynomial interpolation
is employed to convert the quasi-vector wave equation
into the finite difference equation in which the disconti-
nuities above-mentioned are taken into account. More-
over, three adjacent grid points are used to approximate

each differential operator, so the solution is more accu-
rate than that uses two adjacent grid points. In addition,
the present scheme can be applied to both uniform and
non-uniform mesh grids.

The quasi-vector wave equation based on electric fields
derived from the Maxwell’s equations can be written as[2]

Axxux = β2ux, (1a)

Ayyuy = β2uy, (1b)

with
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where k0 is the wave number in free space, n = n(x, y)
is the refractive index profile of the guiding medium,
β = k0neff is the propagation constant and neff is the
effective index. ux and uy are the electric components
in x- and y-direction, respectively. The above two equa-
tions are the scalar wave equations with polarization
correction which correspond to the quasi-transverse elec-
tric (TE) and the quasi-transverse magnetic (TM) wave
equations, respectively. This assumption is accurate for
three classes of waveguides[1]: 1) weakly guiding waveg-
uides with arbitrary shape and small difference in re-
fractive indices between core and cladding or substrate;
2) arbitrary refractive index profile waveguides with an
elongated or slab-like cross section; and 3) rectangular
core waveguides with arbitrary core-cladding refractive
index operated in the far-from cutoff region.

Figure 1 shows the finite difference mesh used in our
approach for a rib waveguide. The structure is scanned
with small rectangular sub-regions of size ∆x ×∆y. In-
side each sub-region the refractive index is constant, so
the discontinuities of the refractive index profile occur
only at the boundaries between adjacent sub-regions. In
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Fig. 1. Finite difference mesh for a rib waveguide.

Fig. 2. Point P and neighboring points.

our finite difference scheme, the discrete points at which
fields are sampled are chosen at the center of each sub-
region, while some finite difference schemes select the
grid points located at the vertices of each sub-region[9].
This is valid for the magnetic field which is continuous
across all dielectric interfaces. For the normal compo-
nent of the electric fields which is discontinuous across
an abrupt dielectric interface, it will lead to vagueness.
The general situation for an arbitrary grid point P with
neighboring points N , S, W , and E is illustrated in Fig.
2. The refractive indices for these points are labeled as
nP , nN , nS , nW , nE , respectively.

Now we should convert the partial differential equation
(1) into the corresponding finite difference equation. We
first deal with the differential operator Axx which oper-
ates on ux. Because ux is continuous across horizontal
interface, the term ∂2ux

∂y2 can be approximated with the
conventional three-point difference, that is

∂2ux

∂y2

∣∣∣∣
P

≈ 1
(∆y)2
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x − 2uP
x + uS

x

)
, (3)

where uP
x stands for the field ux at point P . As we know,

when there is an index discontinuity between W and P
or between E and P , ux will be discontinuous, the finite
difference equations must consider these discontinuities.
We introduce a polynomial interpolation procedure to do
this. A piecewise quadratic polynomial, defined as fol-
lows, is used to fit uW

x , uP
x , and uE

x :

f(x) =
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. (4)

The function f(x) is satisfied with the conditions
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Now we summarize the finite difference equation for
Axxux
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Similar procedure can also be used to derive the finite
difference equations for Ayyuy, and then Eq. (1) is con-
verted into a standard matrix eigenvalue equation, which
can be solved by using MATLAB subroutines. In order to
avoid the nonphysical reflection, the absorbing boundary
conditions[10] are introduced to deal with the grid points
at the edge of the computational window. Moreover, Eq.
(1) can be easily adopted to the non-uniform mesh grids.

The present quasi-vector finite difference method (QV-
FDM) is first used to study a buried rectangular waveg-
uide with the core of width w and height h, as shown in
Fig. 3. The core refractive index n2 = 1.5 at wavelength

Fig. 3. Cross section of a buried rectangular waveguide.
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Table 1. Normalized Propagation Constants for a Buried Rectangular Waveguide
as a Function of the Cladding Refractive Index Computed by Different Methods

n1

Scalar Quasi-TE Mode Quasi-TM Mode

FDM[10] QV-NLIM[11] QV-FDM QV-NLIM[11] QV-FDM

1.45 0.5125 0.5090 0.5091 0.4996 0.4997

1.40 0.5125 0.5052 0.5053 0.4860 0.4861

1.20 0.5125 0.4897 0.4898 0.4258 0.4259

λ = 1.15 µm with w/h = 2. The normalized frequency,
V , is defined as

V =
h

λ

√
n2

2 − n2
1. (11)

The normalized propagation constant, B, is defined as

B =
n2

eff − n2
2

n2
2 − n2

1

. (12)

Table 1 presents the normalized propagation constants
B of the quasi-vector fundamental mode as a function of
the cladding index n1 in the buried rectangular waveg-
uide with V = 1.0. The grid size in the core and its
neighboring cladding is ∆x = ∆y = 0.05 µm, and the
grid size in the other claddings is ∆x = ∆y = 0.1 µm.
In order to test the accuracy of the present method,
the results obtained by scalar FDM[11] and quasi-vector
nonlinear iterative method (QV-NLIM)[12] which has
been proved highly accurate are also summarized in the
table. It can be seen that the results obtained by our
method and the QV-NLIM agree well with each other.
Moreover, the difference between the scalar and quasi-
vector solutions gradually increases with the increment
of the refractive-index contrast between the core and
the cladding regions. The scalar wave equation is valid
only for the weakly guiding waveguides. Figure 4 plots
the field distributions of the quasi-vector fundamental
modes for the buried rectangular waveguide with w =
2.0 µm, h = 1.0 µm, n1 = 1.2, n2 = 1.5, and λ = 1.15
µm. The discontinuities across the core and the cladding
interface for the quasi-TE mode along x-direction and
the quasi-TM mode along y-direction are visible.

Next, we analyze a typical rib waveguide whose cross
section is shown in Fig. 5. Here, the rib width w = 3.0
µm, the rib height h = 1.0 µm, the superstratum index
n1 = 1.0, the core index n2 = 3.44, and the substrate
index n3 = 3.36 with the wavelength λ = 1.15 µm. In the
superstrate (air), coarse grid size, ∆x = ∆y = 0.05 µm,
is used, while in the core and the substrate, fine grid size,

∆x = ∆y = 0.02 µm, is used. The normalized propaga-
tion constants B of the quasi-vector TE and TM modes as
a function of the slab waveguide height t are presented in
Table 2. The results obtained by full-vector beam prop-
agation method (FV-BPM)[13] are also included in this
table. It is seen that the difference between our results

Fig. 4. Field distributions of quasi-TE (a) and quasi-TM (b)
fundamental modes for a buried rectangular waveguide.

Fig. 5. Cross section of a rib waveguide.

Table 2. Normalized Propagation Constants for a Rib Waveguide as a
Function of the Slab Waveguide Height Computed by Different Methods

t Scalar Quasi-TE Mode Quasi-TM Mode

(µm) FDM[10] FV-BPM[12] QV-FDM FV-BPM[12] QV-FDM

0.1 0.3094 0.3039 0.3020 0.2690 0.2668

0.3 0.3179 0.3144 0.3110 0.2776 0.2743

0.5 0.3330 0.3303 0.3279 0.2915 0.2895

0.7 0.3563 0.3533 0.3520 0.3127 0.3111

0.9 0.3914 0.3879 0.3871 0.3451 0.3437
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and the solutions from FV-BPM is relatively small for the
rib waveguide with large slab waveguide height in which
the fundamental modes are far-from cutoff. In this case,
unless the polarization dependence of the guided-modes
is of interest, the quasi-vector results should be sufficient.
However, for the rib waveguide with small slab waveg-
uide height, full-vector mode solver is needed. Figure 6
illustrates the field patterns of the quasi-TE and quasi-
TM fundamental modes with t = 0.3 µm. Here again
the respected discontinuities are observed.

Fig. 6. Field distributions of quasi-TE (a) and quasi-TM (b)
fundamental modes for a rib waveguide.

In conclusion, a finite difference scheme based on
the polynomial interpolation in solving the quasi-vector
wave equations for optical waveguides with step-index
profiles is described. The discontinuities of the normal
components of the electric field across abrupt dielec-
tric interfaces are successfully observed. Moreover, the
quasi-vector results include the polarization effects, but
the order of the resulted matrix is the same as that for
scalar wave equation. Therefore, the computational time
is moderate in comparison with the full-vector results.
The accuracy of the present approach is comparable to
the methods published earlier for a buried rectangular
waveguide and a typical rib waveguide.

J. Xiao’s e-mail address is jbxiao@seu.edu.cn.
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